
Static and dynamic structure factors 
calculated for flexible ring macromolecules 

Walther Burchard and Manfred Schmidt 
Institute of Macromolecular Chemistry, University of Freiburg, West Germany 
(Received 5 December 1979; revised 26January 1980) 

The influence of hydrodynamic pre-averaging on the first cumulant 1 ~ of the dynamic structure factor 
of Gaussian ring molecules has been calculated. Similar to star-branched macromolecules, the relative 
error Ap/F introduced by the pre-average approximation exhibits a maximum at intermediate q = 
(47r/X) sin 0/2 which does not ocour for the corresponding linear chain. This maximum is related to 
the increase of segment density by ring formation. The static structure factor also shows a maximum 
in the Kratky plot (q2(S2)p(q) against q2) and has an asymptote at large q which is half that of linear 
chains. Furthermore, the S:R ratio ((S2)1/2(R~1)), which can be determined from combined integ- 
rated and quasi-elastic scattering, proves to be significantly lower than for the linear chain. Thus, ring 
molecules and open chains can easily be distinguished from combined integrated and quasi-elastic light 
scattering, without comparison with linear chains as has been necessary hitherto. The accuracy will be 
particularly high with instruments which allow the recording of both types of scattering measurements 
simultaneously. 

INTRODUCTION 

Akcasu and Gurol 1 have derived a general equation for the 
first cumulant of the time correlation function gl(t) = 
S(q, t)/S(q, 0) which can be obtained from quasi-elastic 
scattering experiments, where S(q, t) and S(q, 0) are the 
dynamic and static structure factors. Under common con- 
ditions, i.e. dilute solutions, gl(t) is related to the light 
scattering intensity correlation function (fr0)fit)), which is 
actually measured, through: 

<i(O)i(t)) = A + Blgl(t)l 2 (1) 

where A and B are constants and where gl(t) is now the 
normalized electric field correlation function: 

gl(t) = (E(O)E*(t))/(E(O)E*(O)) (2) 

For monodisperse samples with small dimensions in com- 
parison to the wavelength of the light, gl(t) decays 
exponentially: 

gl(t) = e rt = e-Dqh (3) 

where D is the translational diffusion coefficient of the 
Brownian particle and q = (47r/X) sin 0/2, the value of the 
scattering vector. 

For larger particles of geometrical anisotropy or for large 
chain molecules with internal mobility, the electric field 
correlation function shows considerable deviations from a 
single exponential: 'Still, the initial part can be approxi- 
mated by a single exponential where, however, p/q2 = 
Dapp(q) is now a function ofq. 

The Akcasu-Gurol formula has the form: 

N N 

E E ((q'Djk'q)eiqR]k)eq 
F - d l n g l ( t )  / _ ] k 

dt /t=O ~ -~ (eiqR,k)e q 

I" k 

N N 

] k 
= q 2 (4) 

N N 

where Rjk = r/- - rk, and the diffusion tensor is given by: 

o / ~ = k s r  l + - -  t+ (5) 
87rrloR]k " j k  / J 

Equation (4) is noteworthy since only the equilibrium pair 
distance distribution, indicated in equation (4) by the sub- 
script eq, is needed and not the full space-time distribution 
for the calculation of the measurable average. In many 
cases, and in particular for macromolecules in the unper- 
turbed state, this equilibrium distribution is well known. 
Thus, it is possible to derive equations for the first cumu- 
lant of monodisperse and polydisperse linear chains 1-3, of 
regular and polydisperse star-macromolecules 3, of randomly 
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and non-randomly branched polycondensates and of ran- 
domly cross-linked chain¢ ,s. In all these cases the pair dis- 
tance distribution is Gaussian: 

W(Rjk)dR/k = 21rb21j - kl 

[3 R,',] 
exp - dR/k (6) 

2 b 2 1 j - k l  

The length distribution of a pair of elements in a ring- 
molecule differs from equation (6) by the constraint that 
the first and last chain elements of an open chain are linked 
together. According to this constraint, the pair distance 
distribution of ring elements is the convolution of the two 
Gaussian distributions W(Rfl¢) and W(RN/k), where the sub- 
script ]k denotes a chain of] - k elements while Njk de- 
notes the complementary subchain, in the ring, o fN  - I ] -k l  
elements. Convolution of these two Gaussian distributions 
leads to the ring pair distance distribution6: 

Wr(R/k)dR/k = j4/.ex p [_ 32 R2kb 2 

( 1 1 ) ]  dRik (7a) 
IJ kl N -  I1- kl 

or 

3 3/2 

Wr(Rik )dRik = ( 2~rb2N( l -n/N)(n/N) ) 

[ 3 ~ "1 dR/k (Tb) 
exp - 2 bZN(l - n / N ) ( n / N ) J  

where for abbreviation n = [] - kl is used. 

The first cumulant 
The average for the integrated scattering function from 

of elements 4~/z. is readily performed with the one pair 
result6,7: 

~n t = e-v2l(1-n/N)(n/N)] (8) 

where n = [] - kl and 

v 2 = b2Nq2/6 (9) 

The calculation of the corresponding pair function of 
the quasi-elastic scattering q~/t~ is more involved. Compari- 
son of the equations for the ring molecule with those for 
the open chain reveals 3, however, that the final result is ob- 
tained from the relationships for the open chain by replacing 
the length of the open chain n by N(1 - n/N)(n/N). Hence: 

with: 

A kBT/OTO61/27r3/2bN 1/2) (11) 

x 2 = v 2 [(1 - n/N)(n/N)] (1 2) 

and the Dawson integral: 

k 

D(x)=e -x2 f et2dt (13) 

0 

Although the Dawson integral is tabulated s, it offers 
some difficulties in subsequent handling when numerical 
data are required. Therefore, it a l?pears desirable to use a 
satisfactory approximation for ~n ~. The following approxi- 
mation was found to be accurate within 1% up to a value 
o fx  2 = 5; beyond this argument, the approximated pair 
function decays more strongly but the function itself has 
decayed there already below 1/10 of its initial valuea: 

q~n 0 =  O A¢n(n(nO (14) ~n ,pre + 

where: 

Q - kBT A 
- - -  ~ n  + ( 1  - 8 n )  q~n,pre ~. [(1 - n/N) (n/N)] 112 

e-V 2 [(l-n/N) (n/N)l (15) 

A~nQ = 0.200Av 2 [(1 -- n/N)(n/N)] 1/2 

e-a2v 2 [(1-n]N)(n/N)l (16) 

with: 

a 2= 0.72 (17) 

The function ~bQor e is the corresponding pair contribution 
to the quasi-elasiic scattering when the hydrodynamic pre- 
average approximation is applied, i.e. if instead of the cor- 
rect average of equation (4) the product of two averages 
(q "Dik "q) (eiqR/k) = eQ-re is used. 

l~serting equation ( ~  and equation (14)--(1 6) into equa- 
tion (4) and passing to integrals, one obtains: 

r = e(q)-I [ kB T/(¢N) + 2A 
1/f e -v2(1-Ol~ 

[(1 -- ~)~] 1/2 d~j 
0 

+ 0.200v 2 
,,2 ] 
f [(1 - ~)/j] 1/2 e-a2v2(1-~)~ d~ 

0 

(18) 

k B T 8 <PQ=~ .+(1-8n)  
A 

[ ( 1  - n/N) (n/N)] 1/2 

3 
[ -  x 2 + (2x-1 + x-3)D(x)] (10) 

with the particle scattering function: 

1/2 

P(q) =S(q, 0)/N 2 = 2 f e-V2(1-Otd~ 

0 

(19) 
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The integrals can be brought into another form by the 
change of variables: 

= (1 + t)/2 

All integrals are well known and the evaluation yields: 

kBT v2 (1 - e-V2~2) -1 
(20) r -+q2~N ~-- 

which is useful for the integral in equation (19) for the par- 
ticle scattering factor but not advisible for the integrals in 
equation (18). For the particle scattering factor one finds 
with equation (20): 

1 

P(q) = (2/v)e -vU4 f e (v2/4)t2 dt = (2/v)D(v[2) (2,1) 

0 

where D(x) is the Dawson integral which is tabulated in 
ref 8. The parameter v 2 is related to the mean-square radius 
of gyration of the ring by: 

(22) v 2 = b2Nq2/6 = 2($2)q2 = 2u2 

Equation (18) is identical to the relationship derived by 
Casassa many years ago 7. 

Recently Akcasu et al. 9 have given a review of the various 
techniques for the derivation of time correlation functions 
for the quasi-elastic scattering and the corresponding first 
cumulant. For the first cumulant of the Gaussian ring mole- 
cule they obtained an equation which is identical with the 
first two terms of our equation (18), as expected, since these 
authors applied the pre-average approximation. 

[ er f(x/'v2~) 
+q2Arrl/2v [ 1 - e  -vU2 +0"100/a3 

e r f ( ~  ) - 27r-1/2e -a2v2/2 ] 

~---e_~- • j 
(24) 

Inserting equation (8) for v 2 and taking into account that 
erf(oo) = 1, we find witha 2 = 0.72: 

b 2 kB T kB T q3 
p ~ _ _  q 4 + _ _  __ ( l + 0 . 1 0 0 a  -3) 

12  ~" r/0 6n 

b 2 kBT 3 kBTq 4 + 0.0617 - -  q 
12 ~" r/0 

(25) 

which is indeed the asymptote of the open chain 3. 
The behaviour of F in the limit of small q2 is obtained 

by expanding the integrals into a power series: 

P 
small 

q2 

 q2k, [llf ] 
2 ( 1 - v 2 ( 1 - x ) x ) d x  

0 

-1 

COMPUTATIONS AND RESULTS 

Behaviour at large and small q-values 
The integrals in equations (18) and (19) cannot be solved 

in terms of elementary functions and have to be evaluated 
numerically. Some features of the first cumulant can be 
recognized, however, by considering the asymptotic beha- 
viour at large q-values and in the limit of small q. 

We first show that, as expected 3, the asymptote of I" for 
rings becomes identical to that of the open linear chain. 
Inspection of the three types of integrals in equation (18) 
and (19) reveals that the integrands rapidly go to zero when 
v 2 becomes large, such that a negligible value of the inte- 
grand is reached at values o f x  much smaller than 1/2. 
Hence, the quadratic term in v2(1 - x ) x  can be safely neg- 
lected for large v 2. The evaluation for I' simplifies then to: 

1,i [, __, q2 2 v -vzx 

0 

dx 

+ q2A 

1/2 1/2 

f [ (1-x)x l - l /2dx-(4/5)v2/2 f [ (1--X)x] l /2~ 

o 0 

t /2  

f (1 - - V 2 ( 1 - x ) x ) d x  

0 (26) 

Integration yields: 

small [ kBT 7r -- (rr/lO)v 2' 
P q2 > q2 [ +A 

~'N(1 - v2/6) 1 - v2/6 

= q2 [ (1 + u2/3) + Art(1 + (2/15)u 2) (27) 

where we have made use of equation (22). Since, in general: 

lim (Pq -2) = D (28) 
q,-,0 

we find for the translational diffusion constant: 

+q2A 

1/2 1/2 

f x-1/2e-V2Xdx+O.2OOv 2 f xl/2e-a2v2xdx 

0 0 

1/2 

f e_V2Xd x 

0 

(23) 

kBT kBT 
D = ~N + ~r 61/2rr3/2rlobNl/2 (29) 

a result long known 1°-13. 

Numerical calculations 
For the investigation of F in the intermediate q-region 

the integrals of equations (18) and (19) have to be solved 
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Figure I Angular dependence of the non-preaveraged and nor- 
malized f irst cumulant p/q2D for f lexible ring ( ) and open 
chain ( . . . .  ) macromolecules, and the relative error A P / r  
introduced by hydrodynamic pre-averaging. ~P = P -- Ppre, 
Rg = <S 2> = 12 

3 
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/ 
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Normalized first cumulant P/q2D as a function of u 2 = 
) and chain ( . . . .  ) molecules 

Figure 2 
q2($2) for ring ( 

L 

<3 

numerically. The integration involves no difficulties with 
the exception of the first integral in equation (18) which at 

= 0 has a singularity. However, the integral can be solved 
analytically for sufficiently small ~-arguments; thus, we 
solved the integral by analytic integration for ~ = 0 to ~ = 
10-3/v 2 followed by numerical integration up to ~ = 1/2. 
The result is plotted in Figures 1-4  in various ways, where 
we have neglected the free draining or Rouse term; or other- 
wise an assumption on the magnitude of the friction coeffi- 
cient has to be made. The neglect of the Rouse term means 
restriction to large degrees of polymerization, an assump- 
tion implicitly contained already in the substitution of the 
double sum in equation (4) by integrals. 

Figure 1 shows the angular dependence of the first cumu- 
lant as a function of u = q(S2) 1/2 in comparison to the be- 
haviour of the open chain. At very low u-values, the angular 
dependence is slightly weaker for the ring-molecule than for 
the open chain, but the upturn at u-values around 2 - 3  is 
much stronger for the ring. At large u a straight line is ob- 
tained asymptotically with a slope of d(F/q2D)/du ~ 0.9285 
which is a factor 1.2 larger than that of the open chain with 
d(r/q2D)/du ~ 0.7735. 

Figure 2 shows the dependence of F/q2D on u 2. The 
initial part in the power expansion in terms of u 2 has a 
slope of 2/15 compared to that of the open chain 3,s of 
13/75. Unfortunately, the linear part is obtainable for 
small u2-values only; both the ring molecule and the mono- 
disperse open chain exhibit a significant upturn up to u 2 = 4 
before the curves bend down to approach the u-symptote. 
The upturn is more pronounced for the ring molecule than 
for the open chain. 

In Figure 1 we also plot the deviation of the first cumu- 
lant from the correct value when the hydrodynamic pre- 
average approximation is used. The formula for Fpr e is 
given by equation (15) with disregard of the second integral 
(or putting a = oo)9. As for star-branched macromolecules 
AF/F exhibits a maximum at u = 3, and the error introduced 
by the pre-average approximation reaches values up to 17%. 
The maximum arises from the increased segment density in 
the ring molecule compared with that of the open chain 3. 

Figure 3 shows the angular dependence of the first 
cumulant on the reciprocal particle scattering factor. The 
interdependence of the quasi-elastic and integrated scatter- 
ing functions can be well represented by a semi-empirical 
relationship: 

rlq2D = p(q)-V (30) 

with exponents/)ring = 0.485 and/)chain = 0.526. Both 
curves have a slight curvature at small values of P(q) which 
would be scarcely detectable in experiments. The simple 
semi-empirical relationship of equation (30) is thus useful 
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1 2 4 6 8 10 2 0  4 0  60  8 0 1 0 0  
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Figure 3 Interdependence of the normalized first cumulant and 
the particle scattering factor (normalized static structure factor) 
for ring ( ) and chain ( . . . .  ) molecules 
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Asymptot ic behaviour of the particle scattering factors 
) and chain ( . . . .  ) molecules in the Kratky plot  
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for experimental differentiation between the behaviour of  
a ring and an open chain. Appropriate use of  equation (30) 
can be made, however, only if both functions F and P(q) 
are measured accurately enough; and this requires, if any 
possible, the simultaneous recording of  the integrated and 
quasi-elastically scattered intensities. 

Miscellaneous structure-dependent quantities 
In this last section we give a collection of  various quan- 

tities which can be obtained from experiments and which 
allow distinctions between a ring and an open chain. 

By direct comparison of  the ring with the open chain at 
the same degrees of  polymerization, we can obtain the geo- 
metric shrinking factor gring and the hydrodynamic factor 
hring due to Zimm and Stockmayer 6 and Kurate and 
Fukatsu~2: 

The utility of  the quantity SIR is that the ring can be 
differentiated from the open chain by scattering measure- 
ments from a ring molecule only, and measurement of  the 
corresponding open chain is not needed. This property is of  
great value, particularly when biological material is con- 
sidered where the corresponding open chain may be diffi- 
cult to obtain. 

Finally, we give in Figure 4 a representation of  the integ- 
rated scattering function in the Kratky plot, i.e. u2p(q) 
against u. In contrast to the open chain, there is a maximum 
at u = 2.15 for the ring molecule and an asymptote, 
u2p(q) ~ 1.00, which is half that of  the open chain. This 
behaviour could also make characterization of  a ring mole- 
cule easy, i fP (q )  could be measured to large enough q-values. 
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(S2)ring - l /2 (31) 
gring- (S2)chai n 

Dchain 
hring - - 8/(3rr) = 0.84882 (32) 

Dring 

More interesting than these two quantities is the S / R -  
factor defined as SIR = (R~I)(s2) 1/2. This quantity is in- 
dependent of  bond length, and does not directly depend on 
the number of bonds N. Also, the effect of  excluded volume 
can be expected to cancel to a large extent. The hydro- 
dynamic radius is defined as: 

(R E 1) = 6nrloD/k b T (33) 

One finds for the rings in the unperturbed state: 

(SIR)ring = (rr/2) 1/2 = 1.2533 (34) 

while for the chain: 

(SIR)chain = 8/37r ]/2 = 1.508 (35) 

If the effect of  excluded volume is taken into account one 
has, in the region of  validity of  the cluster expansionT'~2'14: 

(SIR)ring = 1.2533 

(SIR)chain = 1.508 

1 + 0.7854z 
- 1.2533(1 + 0.1554z) 

1 + 0.630 z 
(36) 

1 + 0.638z 
- 1.508(1 + 0.029z) (37) 

1 + 0.609 z 
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